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INTRODUCTION 

IN A RECENT study on steady-state counterflow in porous 
media, Satik et al. [I] presented a unified description of the 
process including capillarity, conduction and Kelvin effects. 
The separate contexts in which these phenomena have been 
analyzed before. namely heat pipe [2] and geothermal [3]. 
result as limiting cases of this unified approach. In the present 
communication, the physical implications of the work by 
Satik e/ a/. are further discussed leading to an improved 
understanding of boiling and geothermal applications and 
the relevance of the critical heat flux. 

To proceed, it is briefly noted that in the notation of Satik 
et al. [I] temperature and saturation profiles are obtained 
from the following system : 

(1) 

dS dJ G(r, S) 
dt dS F(r,S) (2) 

where Hand Fare positive functions. The important function 
is G which can change sign somewhere in the (T, S) space : 

G = k,,(sin BR,+oKR,A/r’+sin O~,KR,A/T’) 

+/Jk,(sin BR,+wKR,A/r’). (3) 

Here, vapor pressure lowering has been excluded without 
loss. The various dimensionless variables and parameters 
were defined in ref. [I]. We simply recall that coordinate 
r increases in the direction from the liquid to the vapor, 
o = yp,/kl,gApp, is a dimensionless heat flux, and KR, = 
kL~M,P,,p,/p(,I.RT~ measures the effect of heat conduction. 
The angle 0 is measured counterclockwise, such that vapor 
is at the bottom or the top when 0 = 3n/2 or rr/2, respectively. 

The above is a set of two ordinary differential equations, 
the solution of which requires two boundary conditions. 
In principle, a two-point boundary value problem can be 
specified. However, this necessitates that the length of inte- 
gration be known a priori. This is rarely the case. Instead, 
the problem is typically viewed as an initial value problem, 
in which temperature and saturation are specified at one end 
and integration proceeds towards the opposite end. 

STEADY-STATE VERTICAL COUNTERFLOW 

The case where heat flows from the bottom to the top 
involves two applications. In boiling, a subcooled liquid 
region exists at the top, while it is not necessary that a 
dry region exists at the bottom. Saturation temperature and 
S = I are imposed at the interface II-III and integration 
proceeds in the positive 5 direction (Fig. I(a)). Some geo- 
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thermal systems, on the other hand, contain superheated 
vapor at the bottom but not necessarily subcooled liquid at 
the top. Thus, saturation temperature and S = 0 are imposed 
in region I, the integration now proceeding in the negative 5 
direction (Fig. I(b)). This latter case was thoroughly 
analyzed in ref. [I]. 

In either case, a critical heat flux w,, can be defined. In 
boiling, it denotes the minimum value for the first appearance 
of a dry region (I) at the bottom. In the geothermal appli- 
cation. it is the minimum value necessary to sustain a liquid 
zone (III) at the top. However, although the two con- 
figurations are practically the same, the profiles obtained 
and the critical heat flux value in the two systems are quite 
different. This difference is the main subject of this note. 

Consider, first, the boiling case. Physically, one starts from 
an initially liquid-saturated medium, through which heat is 
conducted, and the top surface of which is maintained at 
constant temperature. Above a certain value of 4, boiling is 
initiated. A liquid-two phase (II-III) interface develops at 
some distance from the top. Integration for the underlying 
two-chase reeion starts here (S = 1). Then the followine 

I  

apply: for o > w,,, a finite length boiling region (spanning 
the entire saturation interval) may develop. However, this 
length is unbounded when o < &. 

In theory, dryout would occur when w first reaches o,,. It 
should be pointed out that this only represents a lower limit. 
In practice (e.g. experiments similar to those reported in 
refs. [2,4]), the two-phase zone length is given by the differ- 
ence between the total and the conductive height. Thus, the 
thickness available in the experiment to the two-phase zone 
must be larger than the theoretical prediction for dryout. As 
a result, the dryout heat flux value will be typically greater 
than w,,. 

In the limit of negligible conduction in the two-phase zone 
(KR, >> I), o,, is equal to a constant o,, [2], which does not 
depend on process parameters (e.g. it takes the value 0.3063 
for a specific pair of relative permeabilities used for steam- 
water). When additionally w < o,,, equations (l)-(3) show 
that two possible solutions exist, each with a nearly flat 
saturation profile (Fig. 2). The saturation values cor- 
responding to each of these are obtained from solving G = 0, 
which here simply reads 

(4) 

This condition expresses the physical situation ofequal vapor 
and liquid pressure gradients (dP, = 0), i.e. the counterflow 
is driven by gravity alone. The nearly flat profiles are the 
attractors of trajectories emanating from either the vapor 
(vapor-dominated, VD) or the liquid (liquid-dominated, 
LD) sides, respectively (Fig. 2). Capillarity is important in 
the spatially short zone that connects dry or subcooled liquid 
regions with the attracting profile. Which trajectory is selec- 
ted depends only on the specification of the boundary con- 
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FIG. I. Schematics of vapor-liquid counterflow for (a) boiling, (b) geothermal systems. Arrows indicate 
the direction of integration. 

dition. In the present boiling application, it is the LD solution 
(the one with the largest saturation value) that is followed. 

We should point out that, while appropriate for the most 
part, such solutions are physically inconsistent at the bottom 
boundary. Indeed, since the two-phase zone must end there, 
its extent is finite. In the present formalism, this can only be 
accomplished by terminating the nearly flat profile at the 
appropriate point. However, this results in non-zero fluxes 
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of both liquid and vapor at the impermeable bottom bound- 
ary, as can be readily shown. The effect is certainly non- 
physical and must be removed. The paradox persists even 
if conduction, capillarity and vapor pressure lowering are 
included, as indeed considered below. How can we resolve 
this paradox? One possibility is that a true ID steady state 
may not exist for o < w,,. This was alluded to in ref. [I]. 
Another is that the present ID formalism is inapplicable near 

G<O 

------ :--iE+ ------------ ---- 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

S 

FIG. 2. Solution trajectories (dashed curves) for ce = 0.1. Solid curves correspond to G = 0 (to which 
trajectories are attracted). Arrows indicate the direction of integration. 
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FIG. 3. Solution trajectory (dashed curve) for o = 0.3065 and KR, = 1031. The solid curve corresponds 
to G = 0. Arrows indicate the direction of integration. 

the bottom boundary, and must be modified by using a more 
detailed 2D analysis, e.g. a pore network model. For a real 
system, a third possibility is to invoke an appropriate het- 
erogeneity in permeability somewhere in the system. All these 
are currently under study. 

For finite KR,, w,, departs from o,-, due to conduction 
and the curve G = 0 depends also on T 

0 0 hkv 
I (5) 

‘+ k,KR,A/r’ 
=piy=mc 

9co”. 

Nevertheless, as long as o < wO, the profile still corresponds 
to the flat saturation (LD) value found above. For a value 
of w very slightly above wO, the curve G = 0 no longer 
consists of two segments parallel to the r axis, which have 
now merged to produce the shape of Fig. 3. For the con- 
ditions of Fig. 3 (w = 0.3065) it is possible for the solution 
to span the entire saturation range, i.e. for a finite zone 
to exist, but an almost flat saturation profile can still be 
theoretically sustained for a significant depth. The physical 
reason for this behavior is that although temperature 
increases, and at a growing rate as the G = 0 curve is 
approached, the temperature gradients are still small 
((dT/dP), is small). Thus, the conductive flux, qmcand, is small 
compared with the convective flux, CJ~~,. In this sense, a 
monotonic saturation profile can be obtained. Now, the criti- 
cal threshold has been surpassed (o > w,,) and dryout is 
possible. For slightly larger values of w (e.g. for UJ > 0.308), 
however, the sharp peak of the G = 0 curve of Fig. 3 dimin- 
ishes fast, making it possible for the integration to reach the 
dry limit (S = 0) in a considerably shorter distance. The 
resulting trajectories are very similar to Fig. 6 of ref. [I]. 

The critical flux for boiling as a function of KR, was 
calculated (equivalently, as a function of permeability, Fig. 
4). It was found that o,, differs very little from the asymptote 
w,, of ref. [2], unless the permeability becomes extremely low 
or the conductivity extremely high (KR, -B 0). In that limit, 
however, the heat flux is conducted rather than convected. 
This effect is limited to a rather unusual region, therefore it 
can be ignored for most practical cases. This behavior of cc,, 
for boiling is consistent with previous studies, but differs 

significantly from that of Satik er al. [I], who predicted not 
only a substantial effect of KR,, but also the existence of a 
critical value, kh, near which o,, diverges. 

In order to understand this difTerence let us remark that 
the problem investigated by Satik ef al. [I] may be physically 
related to a different process, namely condensation. An 
initially vapor-occupied region is progressively cooled at the 
top, the bottom being kept at constant temperature. Above 
a certain value of 4, condensation is initiated. If  o < oO, the 
system behaves similarly to what was described above, except 
that now it is the VD solution that is reached (see Fig. 2). 
As in the previous, the solution is incompatible at the top 
end, where the indefinitely growing two-phase zone must be 
terminated. Satik et al. conjectured against the existence of 
a steady state under such conditions. 

In the no-conduction limit, o,, coincides with oO. 
However, when KR, is finite, (r), is significantly different 
from wO. For a physical explanation, we note that when 
o,, < w CO,,, the conductive heat flux becomes pro- 
gressively more important (larger (dT/dP),) as the solution 
trajectory proceeds towards higher saturations and lower 
temperatures (Fig. 5 of Satik ef nl.). When it intersects the 
curve G = 0, the temperature gradient has reached a value 
such that qcond = 4. At this point, the saturation profile goes 
through a maximum and the solution enters the region 
G < 0. From then on, the directions of vapor and liquid 
velocities in the boiling region are reversed resulting in nega- 
tive convective heat flux so that heat balance is satisfied. This 
condition was also deemed unphysical by Satik et al. [I], who 
postulated the existence of steady states only for o > w,,. 

In addition to being sensitive to KR,, the critical heat flux 
becomes infinitely large as the permeability k approaches a 
threshold value kb (Fig. 4). This is due to the vanishing of 
the vapor pressure. Indeed, as the permeability gets lower, 
capillarity (and gravity to a lesser extent) impose large pres- 
sure drops in the upwards direction, ultimately resulting in 
negative P, values. Then, k,, denotes the lowest permeability 
value below which steady-state counterflow cannot be SUS- 
tained. This limiting value varies linearly with (u/P,,)’ and is 
independent of the thermal conductivity 1 [I]. 

The difference between the two o,, curves suggests an effect 
of hysteresis. In the boiling case, an initially liquid-tilled 
medium is converted to a vapor-liquid system through boil- 
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FIG. 4. Critical heat flux vs permeability for the two cases (I corresponds to top cooling, D to bottom 
heating). 

ing by a gradual increase of the heating rate. The liquid 
pressure is nearly constant. thus the vapor pressure in region 
II is always higher and positive. Conduction effects are neg- 
ligible, therefore o0 is an excellent approximation to the 
critical heat flux for the onset of dryout. By contrast, for the 
other case, an initially vapor-filled medium is converted to 
a vapor-liquid system through condensation by a gradual 
increase of the cooling rate. Now, the vapor pressure at the 
bottom region I is constant and must decrease upwards. For 
low enough (but not infinitesimally small) values of k, the 
vapor pressure decrease is so high that it becomes negative. 
In such a case, increasing UI cannot prevent the collapse of 
vapor pressure. 

We conclude that the critical heat flux curve is different 
depending on the direction from which the steady-state coun- 
terflow is reached. Boiling (bottom heating), which can be 
likened to drainage, is rather insensitive to permeability and 
conduction. Condensation (top cooling), which can be 
likened to imbibition, depends significantly on both variables. 
This difference may be used to decide on the direction 
(cooling vs heating) from which the particular counterflow 
state of a reservoir was reached. 

Some additional remarks are also pertinent. In the geo- 
thermal literature, gravity-driven heat pipes have often been 
used as reservoir models. In many instances a subcooled 
liquid layer is assumed to exist above the two-phase zone. 
This requires 1 

Several geothermal systems appear to satisfy such counter- 
flow configurations (e.g. Kawah Kamojang [5]). In these 
cases, however, it is necessary that the region below the top 
subcooled layer has (significantly) higher permeability, for 
a VD regime to extend to significant depths, as normally 
assumed. Otherwise, the preceding analysis would dictate 
either an LD solution of large extent, if o < co,,, or a short 
two-phase zone followed by a superheated dry region, if 
o > o,,. In short, the existence of a long vapor-dominated 
region overlaid by a subcooled liquid is not possible under 
steady-state conditions in a homogeneous system. 

Configurations of the type studied by Martin et al. [6] and 
Schubert and Straus [3] are more likely. Here 0 = x/2, while 
the temperature gradient and the heat flux are negative 

(from the liquid to the vapor [I]), the integration proceeding 
from bottom (liquid) to top (vapor). To ensure the existence 
of an underlying subcooled liquid layer, the heat flux should 
not exceed an upper limit 

Clearly conduction effects may not be neglected here. A two- 
branch solution, analogous to Fig. 2, also exists in this case 
for low enough values of c = cRT,,/L,P,,M,Jk (see Figs. 
9 and I2 of ref. [I]). However, here it is the VD regime 
that attracts trajectories starting from the liquid side, since 
equation (7) must be satisfied. This long VD zone is underlaid 
by a region rich in liquid (the relativeextent ofwhich depends 
on capillarity) and, further below, by a subcooled liquid 
layer. The so called VAPLIQ geothermal systems (e.g. Los 
Azufres, Mexico) may well fit to this category ofcounterflow 
systems. Their heat fluxes should be quite low due to the 
above limit. In fact, a typical heat flux is approximately 
estimated to be 25 times smaller than the Kawah Kamojang 
system [7]. 

In summary, we have pointed out that steady-state vapor- 
liquid counterRow cannot be uniquely determined, unless the 
past history of the system is known. We have differentiated 
between bottom heating and top cooling to indicate differ- 
ences between boiling and geothermal applications. The lat- 
ter differ with respect not only to saturation values, but also 
to critical heat fluxes. Nevertheless some unresolved issues 
still exist regarding vapor- or liquid-dominated solutions in 
the range w < w,,. Finally, we have ruled out the possibility 
of a VD regime underlying a subcooled liquid in a homo- 
geneous system, but found consistent the reverse con- 
figuration at low heat Buxes. 
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Frequency response of constant-current film anemometers 
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TUKUULENCE research in high-speed flows has motivated 
several new measuring methods [l-3], and has also recruited 
some older techniques already in use for low-speed flows 
such as thermoelement anemometers (‘hot wires’ and ‘hot 
films’). Among the latter. film anemometers are especially 
attractive because their structural rigidity makes them dur- 
able in the hostile surroundings of hypervelocity streams. In 
such environments, however, film anemometers must also 
demonstrate the proper response to high-frequency signals. 
The frequency response of Row-immersible film probes there- 
fore acquires new importance and is discussed in this note. 

The fundamentals of this problem were addressed long 
ago by Ling [4] and Ling and Hubbard [S]. The thermal 
inertia of the thermoelement alone, without a supporting 
substrate, causes a signal attenuation of 6 db per frequency 
octave; Ling [4] showed that with aconducting substrate, the 
attenuation decreases to 3 db octave-‘, without, however, 
presenting the non-dimensional variables and their range for 
which this conclusion is valid. Since then, moreover, other 
workers [6-81 have found that the film-probe response can 
in fact be a very complex function of the frequency, depend- 
ing on the thermal boundary conditions and the operating 
constraints (e.g. ‘constant-temperature’ or constant-current’ 
operation). There exists, therefore, some confusion about 
the basic rules and parameters controlling the response of 
film anemometers, including those of simple geometry. In 
this note we are interested in the generic geometry of the 
long cylindrical probe, parallel to the flow and with a very 
small metallic film deposited on its sharpened upstream 
end. For such probes, which have been successfully operated 
at constant current at hypersonic speeds [9], the response to 
high-frequency flow fluctuations is especially critical. 

The present analysis, details of which appear in ref. [IO], 
aimed at finding the identity and range of the non-dimen- 
sional parameters for which the 3 db octave- ’ response pre- 
vails. In common with most previous approaches, the analy- 
sis views the film to be so thin that it practically coincides 
with the surface of the substrate. The power balance equation 
for the film includes the ohmic heating, the convective heat 
exchange with the flow and the conductive exchange with 
the substrate. Radiation is neglected, and the heat flow in 
the substrate is one-dimensional. The film-substrate system 
receives a heat input from the Row which fluctuates with 
a magnitude much smaller than its corresponding mean 
level. The fluctuations, which may be due to temperature or 

Reynolds number changes, are assumed stationary and 
thus decomposable into Fourier components. 

Without thermal lag, the film output as a function of 
time I would be e, sin wf due to the Fourier component of 
frequency w, where e, stands for the film temperature, or for 
some electrical property such as its voltage at con- 
stant current. The thermal lag distorts this output into 
e, sin (w/+4). The present analysis gives the following solu- 
tions for e, and r$ : 

e” I 

a = [(or+eJ(wT))‘+(l+PJ(tUT))‘]“’ 
(1) 

(2) 

which are plotted in Figs. I and 2 respcctivcly 
Equations (1) and (2) conveniently separate the effects of 

the film itself from those of the substrate, upon the atten- 
uation factor e,/e, and phase lag 4. The film is represented 
by its ‘inherent’ time constant T caused by its finite heat 
capacity E (energy per degree). This time constant also 
depends on the film lateral dimension (‘width’) it’, the fluid 
thermal conductivity at stagnation conditions k,, the ratio 
of ‘cold’ (unheated or equilibrium) to heated resistance RJR, 
the film Nusselt number N and the logarithmic derivative 
N, = (r/N)(CJN/dr) of N relative to r = (R/R,- 1) : 

E 
T =  

wk,N 
(3) 

This expression is, in fact, the classical one for the time 
constant of any convection-controlled thermoelement such 
as ‘hot wire’ anemometers [I I]. 

The effect of the substrate enters via the non-dimensional 
‘loss factor’ Q. which depends on the substrate conductivity. 
density and specific heat. k,, /I>. and c, respectively : 

The film is also represented in equation (4) by its dimensions 
(height h and depth or thickness d) and material density or 
and specific heat cr. Note that the theory admits a finite mass 


